Vicus: Exploiting Local Structures to Improve Biological Network
Analysis

Supplementary Information

Bo Wang®, Lin Huang®, Yuke Zhu® Anshul Kundaje®®, Serafim Batzoglou® and Anna
Goldenbergc, d

@ Department of Computer Science, Stanford University, Stanford, CA, USA
b Genetics Department, Stanford University, Stanford, CA, USA
¢ SickKids Research Institute, Toronto, ON, CA
4 Department of Computer Science, University of Toronto, Toronto, ON, CA

Supplementary Figures

0.8

0.6

NMI

0.4]

0.2

=== aplacian
== \/icus

.8 1 1.2 1.4 1.6 1.8
Scale of Noise &

A B C

Figure 1: An illustrative example showing Vicus is more robust to noise and outliers compared to
Laplacian. Panel A shows the underlying ground-truth network heatmap consisting of 3 connected
components. Given this perfect network, we manually add random noise. The random noise
is generated from uniform distribution between [0,0]. Larger § indicates bigger magnitude of the
noise therefore stronger corruption on the network. Panel B shows an example of the noisy network
after corruption when § = 1.2. Panel C is the clustering accuracy measured by NMI if we vary the
number of noise strength 4.

0 001 002 003 -0.05 0 0.05

-0.02 -0.01 0 001 002 003 0,08 002 001 0 001 002 003

Ground-Truth c=0.1 c=1 oc=10

Figure 2: An illustrative example of comparison between Laplacian and Vicus to illustrate their
sensitivity to hyper-parameters used in the construction of similarity network. The first column
shows the groundtruth of the data distribution. Panel A is the 3D scattering of the data points
used in the experiment. Panel E shows the corresponding 2D ground-truth distribution generating
the data. This is also a desired output of low-dimensional embedding we want to recover. Panels
B-D shows the results of low-dimensional embedding by Laplacian while Panels F-H are for Vicus
using different values of hyper-parameters.

=—NMI =NMI = NMI

—ARI —ARI —ARI

0.9 0.9 0.9
N M\Q : :
0.7 0.7 0.7
0.6 0.6 0.6
05" : : L e : : : - .

5 10 15 20 0.1 02 03 04 05 06 07 08 0.5 0.6 0.7 0.8 0.9 1

Number of K o «a
A B C

Figure 3: Sensitivity test for three hyper-parameters in Vicus. We apply Vicus on the Buettner
data set of single-cell RNA-seq. Panel A shows both NMI and ARI with different choices of number
of neighbors K with fixed ¢ = 0.5 and o = 0.9. Panel B shows both NMI and ARI with different
choices of o with fixed K = 10 and a = 0.9. Panel C shows both NMI and ARI with different
choices of o with fixed ¢ = 0.5 and K = 10.

Supplementary Note: Implementation Details in Large Scale of
Local Spectrum

In this section, we present the details in our implementation of large-scale local spectrum in terms
of both memory and speed management.

Memory Issues.

Memory overhead is a serious challenge to the implementations of many spectral methods.
Consider a data set with n ~ 2 x 10° data points as an example. Storing a full n x n similarity
matrix requires 300GB space. To avoid such a prohibitively significant memory overhead, we
implement a memory-efficient version of Local Spectrum in C'/C' + + to demonstrate the feasibility
on large data sets and to benchmark the performance.

As the similarity matrix typically has low density, we design a specific data structure to store
sparse matrix: a one-dimensional (1D) array linked by two lists. The 1D array contains all the
non-zero elements in the matrix, stored in the row-major order; the first list links the first non-zero
element in every column; and the second list links the first non-zero element in every row. Let ¢
be the number of non-zero elements in a matrix, the memory overhead of this matrix is O(t + 2n),
which is dramatically smaller than the overhead of storing a full matrix O(n?). Going back to
our example, experiments show that the peak memory overhead of applying our memory-efficient
implementation is only 5GB.

Based on this data structure, we also implement a series of functions to perform the matrix
computations, such as matrix transpose, matrix addition, setting up links to a 1D array. These
functions serve as the basic computation blocks in the package; their time complexities are O(t).
In the rest of this subsection, we discuss the computational cost of a few steps and omit the
straightforward ones.

Computational Time Issues.

We parallelize the KNN identification over all the nodes with OpenMP !. For every node x;
in the weighted similarity network we pick the K nearest neighbors of node x; by maintaining an
array containing top K elements while scanning the non-zero elements in the same row as x;. After
we perform this procedure, a sorting is required to store the nearest neighbors in the row-major
order. The time complexity is O(r; K + K log K), where r; is the number of non-zero elements in
the same row as x;.

The main computation component of Local Spectrum lies in the calculation of each row of the
matrix B in Eq.(4) of the main text. This step can also be parallelized over all the nodes. For every
node x;, let m; be the number of nodes that belong to the K nearest neighbors of node z; and the
nodes whose K nearest neighbors include x;. As m; is usually comparable to K, fitting a few m; x m;
two-dimensional arrays into memory is not difficult. Therefore, to achieve high efficiency we create
an (m; + 1) x (m; + 1) two-dimensional array that contains the normalized similarities among z;
and its m; neighbors for the core computation. The array construction costs O(n + m?) time; the
sequential core computations are performed on this 2D array with time complexity O(m?), except
for the matrix inverse. We utilize the Armadillo library version 4.320 (arma.sourceforge.net) to
boost the performance of matrix inverse. In terms of Eigen-decomposition and k-means, we reused
the source code in the pspectralclustering (Parallel Spectral Clustering [1]) package, which was
parallelized using the Message Passing Interface (MPI), to conduct eigen-decomposition and k-
means.

lwww.openmp.org

Time-efficient Version for Mid-Sized Networks

Although many operations in the memory-efficient implementation perform on non-zero ele-
ments only, the maintenance of sparse matrices consume considerable running time. Small and
medium-size networks, such as Corel, have relatively low memory requirement. For these networks,
an efficient way to implement Local Spectrum is to simply keep full matrices in memory. We load
the network into a n x n two-dimensional array. The normalization of this network costs O(n?)
computation time. Sequentially, we identify the K nearest neighbors for every node in the weighted
similarity network. The FOR loop over all the nodes is parallelized using OpenMP. For every node
x, the similarities between x; and any other nodes are sorted using an insertion sort, while only the
K nearest neighbors are kept in the sorted array. Therefore the time complexity is O(nK). Core
computation of this version is based on the same data structure as the memory-efficient version,
therefore it will not be described here.

Note that, the running time was measured on x 2.67GHz Intel Xeon X5550 processors.

Data used in the experiments We used three data sets whose numbers of samples range from
thousands to half million. The first one is called ” Corel” which consists of 2074 images of natural
objects. It is obtained directly from [1]. It can be seen as an example of Mid-sized network. The
second dataset is a common dataset widely used in machine learning, called " MNIST”. It contains
80,000 digit images ranging from ”0” to ”9”. For each The feature is simply the pixel value. All
the images are of size 28 x 28. The last one dataset has more than half million data instances.
This dataset describes forest cover types from cartographic variables. Detailed description about
this dataset can be found in https://archive.ics.uci.edu/ml/datasets/Covertype. Note
the last two datasets are downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/multiclass.html

Vicus results on large scale networks

One advantage of the global Laplacian is its simplicity. Vicus is more robust and effective but
unavoidably suffers from higher computational burden. In this section, we show that, our local
spectrum is well suited to distributed and parallel computations and has time complexity compa-
rable to the global Laplacian. We conducted clustering experiments using three benchmark large
scale datasets [1] in Table 1. These datasets contain real-world data from various fields. Similarly
to [1], our method can be naturally sped up by parallel computing. Detailed theoretical time com-
plexity analysis between Vicus and Laplacian-based spectral clustering is presented in Materials
and Methods. Our results indicate that local spectrum can achieve higher accuracy of network
partitioning with the running time comparable to global spectral clustering (Table 1).

Table 1: A quantitative summarization on the three large scale datasets. Statistics for the three
used large scale datasets and results of network clustering by Laplacian and Vicus are reported.
Note NMI-L and NMI-V represent the NMI values by Laplacian and Vicus respectively. Similarly,
Time-L and Time-V represent the running time by Laplacian and Vicus respectively.

Dataset | #Instances | #Features | #Classes | NMI-L | NMI-V | Time-L Time-V
Corel 2,074 144 18 0.3836 | 0.4017 | 2.0 sec. 2.5 sec.

MNIST 80,000 784 10 0.6510 | 0.8113 | 48 sec. 65 sec.

Covtype 581,012 o4 7 0.1589 | 0.2004 | 7.5 mins | 12.9 mins

References

[1] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Edward Y Chang. Parallel
spectral clustering in distributed systems. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 33(3):568-586, 2011.

